Lesson 13.2: Normal Curves

A Normal distribution is described by a Normal density curve. Any particular Normal distribution is <u>completely specified</u> by two numbers: its mean μ and standard deviation σ . The mean of a Normal distribution is at the <u>center</u> of the <u>symmetric</u> Normal curve. The standard deviation is the <u>distance</u> from the center to the change of <u>curvature points</u> on either side. We abbreviate the Normal distribution with mean μ and standard deviation σ as $N(\mu, \sigma)$.

M= "mu"
mean

<u>68-95-99.7 Rule</u>

34%

13.5%

 $\mu - \sigma$

 $\mu-2\sigma$

2.35%

0.15%

z-scores:

68%

95%

99.7%

μ

34%

13.5%

 $\mu + \sigma$

The <u>standard Normal distribution</u> is the Normal distribution with <u>mean 0</u> and <u>standard deviation 1</u>. If a variable x has any Normal distribution $N(\mu, \sigma)$ with mean μ and standard deviation σ , then the <u>standardized variable</u> $z = \frac{x-\mu}{\sigma}$ has the standard Normal distribution N(0, 1).

The <u>standard Normal table</u> is a table of <u>areas</u> under the standard Normal curve. The <u>table entry</u> for each value z is the <u>area</u> under the curve to the <u>left</u> of z.

The distribution of weights of 9-ounce bags of a particular brand of potato chips is approximately Normal with mean $\mu = 9.12$ ounces and standard deviation $\sigma = 0.05$ ounce. On the sketch below label the mean, as well as the points 1, 2, and 3 standard deviations away from the mean on the horizontal axis.

a- Identify the interval(s) that contain the given approximate areas under the curve.

95%	47.5%
9.02 2 9.22	13.5 + 34 = 47.5% $9.02 + 9.12$ $9.12 + 9.22$
	9.02 to 9.12
	9.12 to 9.22

a- Identify the interval(s) that contain the given approximate areas under the curve.

16%	97.35%
.15+2-35+13.5=16%	95+ 2.35 = 97.35
Below 9.07	9.02 to 9.27
Above 9.17	8.97 to 9.22

a- What percentage of potato chip bags weigh less than 9.02 ounces?

b- What percentage of potato chip bags weigh more than 9.07 ounces?

c- What percentage of potato chip bags weigh between 8.97 and 9.22 ounces?

The mean height of 18-24-year-old males in the United States is about 70.1 inches with a standard deviation of 2.7 inches. The mean height of 18-24-year-old females is about 64.8 inches, with a standard deviation of 2.5 inches.

What percentage of men are under 6 feet tall? Find the appropriate z-score to answer this question as well as the percentage requested.

$$Z = \frac{72 - 70.1}{2.7} = 0.70$$

$$75.80^{\circ}/_{\circ}$$

Less than: Keep % the same More Than: 100 - %
Between: Subtract the two %'s

The mean height of 18-24-year-old males in the United States is about 70.1 inches with a standard deviation of 2.7 inches. The mean height of 18-24-year-old females is about 64.8 inches, with a standard deviation of 2.5 inches.

d- The average height of WNBA players is 5'11" How many women are taller than that? Find the appropriate z-score to answer this question as well as the percentage requested.

$$Z = \frac{(71 - 64.8)}{2.5} = 2.48$$

Table: 99.34%.

Table: 99.34%.

 $\frac{100}{100} - 99.34\% = 0.66\%$

The mean height of 18-24-year-old males in the United States is about <u>70.1 inches</u> with a standard deviation of <u>2.7 inches</u>. The mean height of 18-24-year-old females is about 64.8 inches, with a standard deviation of 2.5 inches.

e- To work as a flight attendant for United Airlines, you must be between 5'2" 62" and 6' tall. What percent of men of this age meet the height requirement? Find the appropriate z-score to answer this question as well as the percentage requested.

$$X = 62$$

 $M = 70.1$
 $0 = 2.7$
 $T = \frac{12 - 70.1}{2.7} \approx 0.70$
 $T = \frac{13\%}{2.7} \approx -3$
 $T = \frac{12 - 70.1}{2.7} \approx 0.70$
 $T = \frac{13\%}{2.7} \approx 0.70$