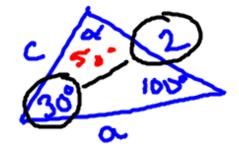


a β c

With the Law of Sines, we can solve any triangle with 2 angles and a side (ASA or AAS)

Solve the Triangle.

$$\beta=30^{\circ}$$
, $\gamma=100^{\circ}$, $b=2$



$$\frac{\sin 30^{2}}{2} \times \frac{\sin 100^{6}}{C}$$

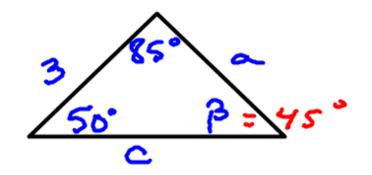
$$\frac{2 \sin 100^{6}}{\sin 30^{6}} = \frac{C \sin 30^{6}}{\sin 30^{6}}$$

$$C = \frac{2 \sin 100^{6}}{\sin 30^{6}} \approx \boxed{3.9}$$

$$\frac{\sin 30^{\circ}}{2} = \frac{\sin (50^{\circ})}{\cos (50^{\circ})}$$

Solve the Triangle.

$$\alpha = 50^{\circ}, \gamma = 85^{\circ}, b = 3$$



Side a:

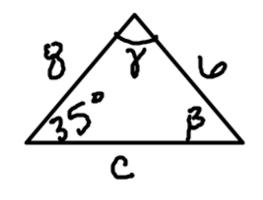
$$a = \frac{3\sin 50}{\sin 45} \approx 3.3$$

Side Ci

We can also solve SSA triangles with the Law of Sines. This creates the ambiguous case (since SSA triangles can have zero, one or two solutions).

Solve the Triangle.

$$\alpha = 35^{\circ}, a = 6, b = 8$$



$$Sin \beta = \frac{8 sin 35}{6}$$

 $\beta_{i} = sin^{-1} \left(\frac{8 sin 35}{6} \right) \approx 49.9^{\circ}$
 $\beta_{2} = 180^{\circ} - 49.9^{\circ} = 130.1^{\circ}$

* If $\alpha + \beta_2 < 180^\circ$, then there is a 2nd triangle.

given secondum

We have a 2nd, Triangle

Triangle!

Triangle 2: $\beta_2 = 130.1^{\circ}$ $\delta_2 = 180-130.1-35$ $\delta_2 = 14.9^{\circ}$

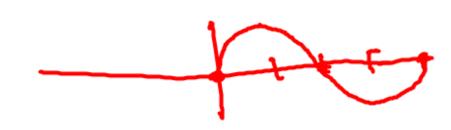
Solve the Triangle.

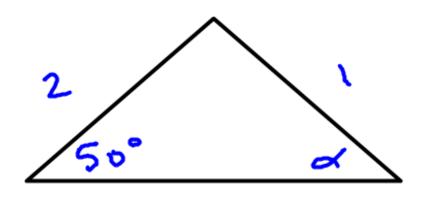
$$\alpha = 40^{\circ}, a = 3, b = 2$$

Ambiguos!

Solve the Triangle.

$$\gamma = 50^{\circ}, a = 2, c = 1$$





An airplane is flying between two airports that are 35 mi apart. The radar in one airport registers a 27° angle between the horizontal and the airplane.

The radar system in the other airport registers a 69° angle between the horizontal and the airplane. How far is the airplane from each airport to the

