Lesson 11.2: Arithmetic Sequences and Series

In an <u>arithmetic</u> sequence, the difference between successive terms is constant (or the same number). $a_{n-1} + 7$

Recursive Definition

$$a_1 = a$$
$$a_n = a_{n-1} + d$$

- * d represents the common the difference
- * a represents the first term

Note: When writing a recursive definition, the first term **must** be stated.

Recursive Definition

$$a_1 = a$$
$$a_n = a_{n-1} + d$$

nth Term Definition
(also called the explicit definition)

$$a_{10} = a$$
 $a_{10} = a + d$
 $a_{10} = a + 2d$
 $a_{10} = a + 3d$
 $a_{10} = a + 9d$
 $a_{10} = a + (n-1)d$

Is the following sequence arithmetic? If yes, find the first term and common difference.

not arthmetic

Is the following sequence arithmetic? If yes, find the first term and common difference.

$$(3n + 5)$$

yes.

 $a_1 = 3(1) + 5 = [8]$
 $d = 3$

Note: To find the first term, **always** plug in 1 for *n*.

Find the common difference and write the first four terms of

s of
$$\{5-\frac{1}{2}n\}$$

$$a_1 = 5 - \frac{1}{2}(1) = 4.5$$
 $a_2 = 4$
 $a_3 = 3.5$
 $a_4 = 3$

Suppose $a_1 = 4$ and d = -7, find the following:

- a) nth term
- b) 10th term
- c) Recursive definition.

$$(a)$$
nth term $\rightarrow a+(n-1)d$
 $(a-d)$

$$-7n + (4 - -7)$$

 $\left\{\frac{2}{7} - 7n + 113\right\}$

$$a_{1} = 4$$
 $a_{n} = a_{n-1} = -$

Suppose $a_1 = 2$ and d = 4, find the following:

- a) nth term
- b) 14th term
- c) Recursive definition.

(a)
$$n^{m}$$
 term: $dn + (a-d)$
 $\frac{54n-23}{}$

Recursive
$$a_1 = 2$$
 $a_n = a_{n-1} + 4$

Find the 99th term in the given arithmetic sequence 4, 7, 10,...

$$a_1 = 4$$
 $d = 3$
 $d_1 + (a - d)$
 $d = 3$
 $d_1 + (a - d)$
 $d = 3$
 $d_1 + (a - d)$
 $d = 3$
 $d_1 + d_2 + d_3$
 $d = 3$
 $d_1 + d_3 + d_4$
 $d = 3$
 $d_1 + d_4 + d_4 + d_5$
 $d = 3$
 $d_1 + d_4 + d_5$
 $d = 3$
 $d_1 + d_4 + d_4 + d_5$
 $d = 3$
 $d_1 + d_4 + d_4 + d_5$
 $d = 3$
 $d_1 + d_4 + d_4 + d_5$
 $d = 3$
 $d_1 + d_4 + d_4 + d_5$
 $d = 3$
 $d = 3$
 $d = 3$
 $d = 3$
 $d = 4$
 d

Find the following:

- a) 1st term
- b) Common difference
- c) Recursive definition
- d) nth term definition: $d \cap * (a d)$

$$d = \frac{32 - 8}{17 - 9} = \boxed{3}$$

$$a_9 = 8$$
; $a_{17} = 32$

Finding the Sum of an Arithmetic Series

g the Sum of an Arithmetic Series
$$S_n = \frac{n}{2}(a_1 + a_n)$$

$$S_n = \frac{n}{2}(a_1 + a_n)$$
Last +crm

Find the sum of
$$8 + 11 + 14 + \dots + 68$$

$$S_n = \frac{n}{2}(a_1 + a_n)$$

$$S_n = \frac{21}{2}(8 + 68) = 798$$

$$\frac{744 + 4em^{3}}{53n + 53}$$

$$3n + 5 = 68$$

$$3n = 63$$

$$n = 24$$

1.

2.

3.

Write the following in summation notation $8 + 11 + 14 + \cdots + 68$

Find the sum of
$$-1 + 3 + 7 + \dots + 151$$

$$S_n = \frac{n}{2}(a_1 + a_n)$$

$$= \frac{39}{2}(-1 + |S|) = 2925$$

Write the following in summation notation $-1 + 3 + 7 + \cdots + 151$

$$\sum_{k=1}^{n} (Explicit Formula)$$

The corner section of a football stadium has 15 seats in the first row and 40 rows in all. Each successive row contains two additional seats. How many seats are in this section?

$$S_{n} = \frac{n}{2}(a_{1} + a_{n})$$

$$A_{1} = (5)$$

$$A_{2} = (15 + 93)$$

$$A_{3} = 2$$

$$A_{n} = 2n + 13$$

$$A_{40} = 2(46) + 13 = 93$$